
Azure Web App Security Labs Page 1 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

ASP.NET Core Claims-based Security using
Azure App Authentication & the /.auth/me
Service Endpoint
Introduction
This lab is part of a series. This fifth lab will take our sample application and convert it over to use
claims-based authentication. We’ll also explore how to use Azure App Authentication’s (aka. Easy
Auth’s) /.auth/me service endpoint to retrieve more detailed information about the currently
authenticated user.

So far in this series of labs, you’ve got an ASP.NET Core app that uses policies, requirements, and
handlers to do authorization checks. At the API level, ASP.NET Core’s identity and authorization logic is
focused on claims-based identity. At present, our sample application is not using claims-based
authentication. Not using claims-based auth isn’t holding us back too much at the moment but
ultimately, we’ll want to use claims-based auth because it’s a lot more flexible and it’s the way that most
modern security frameworks are constructed.

Terminology
The Portal uses a user interface concept that tends to expand horizontally towards the right. Every time
that you choose something, rather than popping open a dialog box, it creates a new panel of in the user
interface. These panels are called blades. I’ll be referring to UI blades through this lab.

Variables
A lot of the resources that you create in this lab are going to need unique names. When I say unique, I
mean that they’re going to need to be unique for Azure and not just fun and creative. Since I can’t
possibly know which values that you’re going to need to choose, I’m going to give you the list of these
values now and let you choose them. I’ll refer to these as “variables” throughout the lab and when I
refer to them, I’ll put them in squiggle brackets like this – {{Variable Name}}.

Variable Name Description Your Value
{{App Name}} This is the name of your application

in Azure. This will eventually turn
into the URL for your application.
For example, if my App Name is
‘thingy123’ application URL that
azure generates will be
https://thingy123.azurewebsites.net.

{{Resource Group}} This is the name of the Azure
resource group.

http://www.benday.com/
https://thingy123.azurewebsites.net/

Azure Web App Security Labs Page 2 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

{{App Service URL}} This is the URL for your web app.
This value is generated for you by
Azure.

https://{{App Name}}.azurewebsites.net

Source Code
You can download the source code for this lab from
https://www.benday.com/labs/azure-web-app-security-2018/benday-azure-web-app-code-lab5.zip

Open the Sample Solution & Publish to Azure
For this lab, you’re going to use a simple ASP.NET MVC Core application that’s in the zip file for lab 5.
This code is very simple. It’s not much more than what you’d get if you created a new solution and
ASP.NET MVC Core project.

1. Locate the zip file for this lab.
2. Extract the zip to a folder on your local disk (for example, c:\temp\azure-labs)
3. In the before folder for this lab, open the Benday.EasyAuthDemo.sln solution using Visual

Studio 2017. When it’s opened, you should see two projects in Solution Explorer.

http://www.benday.com/
https://www.benday.com/labs/azure-web-app-security-2018/benday-azure-web-app-code-lab5.zip

Azure Web App Security Labs Page 3 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

4. Let’s make sure that the web project is marked as the start up project. In Solution Explorer,
right-click on the Benday.EasyAuthDemo.WebUi project. From the context menu, choose Set
as StartUp Project.

5. Publish Benday.EasyAuthDemo.WebUi to your Azure Web Site by doing a Right Click  Deploy.
6. After the publish has completed, you should see a browser window with your published web

app running on Azure. If you don’t see your application, open a browser and go to {{App Service
URL}}.

7. In the menu bar of the web application, click the Security Summary link

http://www.benday.com/

Azure Web App Security Labs Page 4 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

8. You should see a page that looks like the following image.

This page of the application is the Security Summary page.

The Security Summary Page, Part 1: Authenticated User

The purpose of Security Summary is to quickly visualize what is happening related to security in the
application. An important thing to point out is that this page doesn’t require you to be logged in and
that’s helpful because, as a developer, you’ll need to see what’s happening with your application’s
security for both authenticated users and non-authenticated users.

At present, this page is only partially implemented. We’ll implement all the missing stuff in this lab. The
Security Summary interface is divided into sections: User Info, Claims Summary, Header Summary, and
Cookie Summary.

• User Info isn’t implemented yet.
• Claims Summary is implemented by the application itself isn’t configured to use claims so that

section of the UI is empty.
• Header Summary is fully implemented and shows you all the headers and header values that

were on the last HTTP request.

http://www.benday.com/

Azure Web App Security Labs Page 5 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

• Cookie Summary is implemented and shows you all the cookies that were on the last HTTP
request.

Let’s take a tour of the Security Summary page.

9. At the top of the Security Summary page, click the Login link. Log in using your Microsoft
Account and navigate back to the Security Summary page.

10. Locate the Header Summary section of the user interface. Scroll down through the headers

values until you get to the values that start with “X-MS-“. Those headers should be in bold
letters.

http://www.benday.com/

Azure Web App Security Labs Page 6 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

Azure App Authentication (Easy Auth) HTTP Headers

You should see a bunch of headers in bold letters such as X-MS-CLIENT-PRINCIPAL-NAME, X-MS-
CLIENT-PRINCIPAL-IDP, and X-MS-TOKEN-MICROSOFTACCOUNT-EXPIRES-ON. These headers are
injected into your HTTP Request by Azure App Authentication security.

• X-MS-CLIENT-PRINCIPAL-NAME contains the human-readable name of the current user or the
username of the current user.

• X-MS-CLIENT-PRINCIPAL-IDP contains the name of the identity provider that was used to
authenticate this user. In this case, it’s microsoftaccount meaning that we used a Microsoft
Account (MSA) to create this session.

• X-MS-TOKEN-MICROSOFTACCOUNT-EXPIRES-ON tells us when the security token will expire.

The value that you see for X-MS-CLIENT-PRINCIPAL-NAME depends on the settings you configured in the
in the Azure Portal for your Web App’s Microsoft Account Authentication Settings section.

If you set Microsoft Account Authentication Settings to wl.basic, then the X-MS-CLIENT-PRINCIPAL-
NAME value will be a human-readable name (for example, “Benjamin Day”). If you set Microsoft
Account Authentication Settings to wl.basic plus wl.emails, then the X-MS-CLIENT-PRINCIPAL-NAME
value will be the MSA account user id for the current user (for example, “benday@live.com”).

If you have your application set to only request wl.basic from the user, then you won’t be able to see
his/her email address.

Verify That Your Application is Configured for wl.basic and wl.emails.

11. Open a new tab in your browser and navigate to https://portal.azure.com
12. Under App Services, navigate to the configuration page for you Azure Web App {{App Name}}.
13. Click on Authentication / Authorization

http://www.benday.com/
https://portal.azure.com/

Azure Web App Security Labs Page 7 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

14. Under Authentication / Authorization, click on Microsoft

15. Verify that wl.basic and wl.emails are both checked.

16. At the bottom of the blade, click the OK button.

http://www.benday.com/

Azure Web App Security Labs Page 8 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

17. If you made changes on the previous blade, click the Save button. (NOTE: if you didn’t make any
changes, this button will be greyed out.)

18. In your browser, go back to the Security Summary tab.

The Security Summary Page, Part 2: The /.auth/me Service Endpoint

You should be back on the Security Summary page. Azure Easy Auth has a service endpoint with the
address of /.auth/me. The /.auth/me service lets you access a JSON string with all the information that
Azure App Authentication knows about the current user.

19. Scroll up to the top of the page.
20. At the top of the page, click on the Auth Me Info link.

21. You should now be on a new tab and you should see a bunch of JSON data.

If you got an empty JSON string or got an access denied message, go back to the Security
Summary, click and click on Login. After you’ve logged in, click on the Auth Me Info link again.

http://www.benday.com/

Azure Web App Security Labs Page 9 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

This large block of JSON is what Azure Easy Auth knows about you. The especially important stuff is in
the JArray named user_claims. Since Azure Easy Auth works using claims-based identity, all these pieces
of info come through as individual name-value pairs. Each of these name-value pairs is called a claim.

[

 {

 "access_token": "token-redacted-for-security-reasons",

 "expires_on": "2018-05-21T20:06:47.754206Z",

 "provider_name": "microsoftaccount",

 "user_claims": [

 {

 "typ": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier",

 "val": "66759c6053a12290"

 },{

 "typ": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress",

 "val": "benday@live.com"

 }, {

 "typ": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name",

 "val": "Benjamin Day"

 }, {

 "typ": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname",

 "val": "Benjamin"

 }, {

 "typ": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname",

 "val": "Day"

 },
...

],

 "user_id": "benday@live.com"

 }

]

If you look back on the Security Summary, you’ll notice that the Claims Summary section is empty.

Let’s fix that.

http://www.benday.com/

Azure Web App Security Labs Page 10 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

Populate User Claims using Custom ASP.NET Middleware

Ok. So let’s just quickly summarize where we’re at. We’ve got a Security Summary page in our app that
can show us our claims and the HTTP headers for each request. We know that there’s information in
the headers about the user if that user is logged in to Easy Auth. We also know that if the user is logged
in then he/she can access the /.auth/me service endpoint to get JSON-formatted information about the
authenticated user.

That /.auth/me JSON has some handy data in it that would be really nice to put on the screen and use in
our app. Specifically there are claims for First Name (Given Name), Last Name (Surname), User Id, and
Email Address.

So how come our claims are empty when we go to the Security Summary? Honestly, I’m not sure. If you
were to do an application using Easy Auth and ASP.NET Classic (aka. not ‘Core’), those claims would be
automagically populated for you. My guess is that because ASP.NET Core is still pretty new, that Easy
Auth doesn’t fully 100% support ASP.NET Core yet.

For now, we’ll need to intercept the incoming HTTP Request and populate the claims. To do this, we’ll
use a piece of custom middleware. Middleware is a piece of code that – uhmmm – sits in the middle of
an HTTP request pipeline. It’s in the middle so therefore, middleware. Anyway, middleware has access
to the execution context for the request and lets us do custom actions. There are several ways of
writing middleware but the easiest and most type-safe way is to create a class that implements the
Microsoft.AspNetCore.Http.IMiddleware interface.

In the sample application in the Security namespace, there is a class called PopulateClaimsMiddleware
that, when called, populates the claims for the current user using header values and data from the
/.auth/me service.

public class PopulateClaimsMiddleware : IMiddleware
{
 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 List<Claim> claims = new List<Claim>();

 AddClaimsFromHeader(context, claims);
 AddClaimsFromAuthMeService(context, claims);

 var identity = new ClaimsIdentity(claims);

 context.User = new System.Security.Claims.ClaimsPrincipal(identity);

 await next(context);
 }

 ...
}

http://www.benday.com/

Azure Web App Security Labs Page 11 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

In the middleware code, some of the values come from the headers and some of the values come from
the /.auth/me service. Ultimately, all the values get set on the User property of the current HttpContext
so that it’s available throughout the rest of the request execution.

The code in AddClaimsFromAuthMeService() uses a class called AzureEasyAuthClient to make the
service call to /.auth/me using the logged in user’s security token. The really important code in
AzureEasyAuthClient is the code that grabs the AppServiceAuthSession cookie from the user’s HTTP
Request and attaches that same cookie to the service call to /.auth/me. Passing that cookie along is
how this HttpClient code authenticates with the /.auth/me service.

NOTE: theoretically, you can pass the token that’s inside of that AppServiceAuthSession cookie to the
/.auth/me service using a header named ‘x-zumo-auth’. Unfortunately, I was unable to make that work
and the documentation for Azure App Authentication (aka. Easy Auth) is practically non-existent.

private void TryInitializeHttpClientUsingSessionCookie(HttpRequest request)
{
 var requestCookies = request.Cookies;

 if (requestCookies.ContainsKey(SecurityConstants.Cookie_AppServiceAuthSession) ==
 false)
 {
 IsReadyForAuthenticatedCall = false;
 }
 else
 {
 var handler = new HttpClientHandler();

 var client = new HttpClient(handler);

 var baseUrl = $"{request.Scheme}://{request.Host}";

 client.BaseAddress = new Uri(baseUrl);

 var container = new CookieContainer();

 handler.CookieContainer = container;

 var authCookie =
 requestCookies[SecurityConstants.Cookie_AppServiceAuthSession];

 container.Add(
 new Uri(baseUrl),
 new Cookie(
 SecurityConstants.Cookie_AppServiceAuthSession,
 authCookie));

 IsReadyForAuthenticatedCall = true;

 _Client = client;
 }
}

http://www.benday.com/

Azure Web App Security Labs Page 12 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

Also in the Security namespace, there’s a class called ExtensionMethods.cs. This class has a method in it
called UsePopulateClaimsMiddleware(). This method has the logic to hook the middleware into the
ASP.NET Core execution pipeline.

public static class ExtensionMethods
{
 public static IApplicationBuilder UsePopulateClaimsMiddleware(
 this IApplicationBuilder builder)
 {
 return builder.UseMiddleware<PopulateClaimsMiddleware>();
 }

 ...
}

Enabling Our Middleware in ASP.NET Core

Let’s hook the middleware into the application.

22. In Visual Studio, go to Solution Explorer. In the web project, locate Startup.cs and open it.

http://www.benday.com/

Azure Web App Security Labs Page 13 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

23. In the editor for Startup.cs, locate the Configure() method.
24. Uncomment the line that says app.UsePopulateClaimsMiddleware();

25. In the editor for Startup.cs, locate the ConfigureServices() method.

Add the following line to ConfigureServices() as shown below:
services.AddTransient<PopulateClaimsMiddleware>();

26. Compile the solution.
27. Deploy the web application to your Azure Web App using Right-Click  Deploy.

http://www.benday.com/

Azure Web App Security Labs Page 14 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

28. In the browser, go to Security Summary.
29. Verify that Claims Summary is now populated with claims.

NOTE: if Claims Summary is still empty, click the Login button at the top of Security Summary
and log back in.

Ok. We’ve got the middleware hooked in and we’re populating the user’s claims.

But we’re not doing anything useful with them. Let’s use claims to populate the User Info section of the
Security Summary.

http://www.benday.com/

Azure Web App Security Labs Page 15 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

Modify SecuritySummaryController to Access IUserInformation

If we want to access the user’s claims, they’re available to us by accessing the User property on
HttpContext or via the User property on the ASP.NET Controller base class. Now we could access the
claims directly but if we want to keep our code clean, it’s often a good idea to create a separate class
that knows how to access those claims. There’s already a interface named IUserInformation and a class
named UserInformation in the sample application. Let’s hook that in to the SecuritySummaryController
code.

30. In Visual Studio, open SecuritySummaryController.cs
31. At the top of the SecuritySummaryController class, add the following using statement:

using Benday.EasyAuthDemo.WebUi.Security;

32. In the class itself, add the following code in italics.

public class SecuritySummaryController : Controller
{
 private IUserInformation _UserInfo;

 public SecuritySummaryController(IUserInformation userInfo)
 {
 if (userInfo == null)
 {
 throw new ArgumentNullException(nameof(userInfo),
 $"{nameof(userInfo)} is null.");
 }

 _UserInfo = userInfo;
 }

 ...
}

33. Locate the PopulateUserInfo() method.
34. Change the code in the PopulateUserInfo() method to the following code:

private void PopulateUserInfo(SecuritySummaryViewModel model)
{
 model.IsLoggedIn = _UserInfo.IsLoggedIn.ToString();
 model.FirstName = _UserInfo.FirstName;
 model.LastName = _UserInfo.LastName;
 model.EmailAddress = _UserInfo.EmailAddress;
}

http://www.benday.com/

Azure Web App Security Labs Page 16 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

35. Open Startup.cs

36. Locate the ConfigureServices() method.
37. Add the following code to the ConfigureServices() method.

public void ConfigureServices(IServiceCollection services)
{
 services.TryAddSingleton<IHttpContextAccessor, HttpContextAccessor>();

 services.AddTransient<PopulateClaimsMiddleware>();

 services.AddTransient<IUserInformation, UserInformation>();

 services.AddMvc();

 ConfigureAuthentication(services);
 ConfigureAuthorization(services);
}

http://www.benday.com/

Azure Web App Security Labs Page 17 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

38. In the Security namespace, locate and open UserInformation.cs

The UserInformation class has all the logic for accessing the current user’s claims and getting the values
for the desired claims. It’s also got logic to make sure that it safely handles when the user is not logged
in and/or a desired claim does not exist in the user claims collection. Having this logic wrapped into it’s
own class makes the code a lot less error-prone and keeps the logic for reading claims very clean and
organized.

public bool IsLoggedIn
{
 get
 {
 return Claims.ContainsClaim(SecurityConstants.Claim_X_MsClientPrincipalIdp);
 }
}

public string FirstName
{
 get
 {
 return Claims.GetClaimValue(ClaimTypes.GivenName).SafeToString();
 }
}

Here’s a piece of advice. Accessing claims can become a coding nightmare. Do yourself a favor and
keep your code organized. More importantly, watch out for duplicate code!

39. Compile the solution
40. Deploy the updated version of the app to Azure using Right-click  Deploy.

http://www.benday.com/

Azure Web App Security Labs Page 18 of 18

Copyright © 2018 – Benjamin Day Consulting, Inc. – www.benday.com

Printing or duplication is prohibited without author’s expressed written permission.

Verify User Info Is Being Populated from Claims

The updated version of the app should be deploy to Azure. Let’s verify that we’re reading the claims
info and putting it up on the screen.

41. In a browser, go to {{App Service URL}} to view your app
42. Go to the Security Summary page.
43. Make sure that you’re logged in
44. Locate the User Info section
45. Verify that User Info is being populated with your information.

If the user info section is populated, you’re done!

Summary
Here’s a quick summary of what we did.

We wanted to use Azure App Authentication (aka. Easy Auth) with ASP.NET Core and claims-based
authentication. In order to do this, we added a piece of custom middleware that plugged into the
ASP.NET Core request pipeline and populated the authenticated user in HttpContext. Once we did that,
we used a utility object to access the user’s claims and display them on the page in the Security
Summary.

Congratulations! You’ve got claims-based authentication working with an Azure Web App and ASP.NET
Core.

http://www.benday.com/

	Introduction
	Terminology
	Variables
	Source Code
	Open the Sample Solution & Publish to Azure
	The Security Summary Page, Part 1: Authenticated User
	Azure App Authentication (Easy Auth) HTTP Headers
	Verify That Your Application is Configured for wl.basic and wl.emails.
	The Security Summary Page, Part 2: The /.auth/me Service Endpoint
	Populate User Claims using Custom ASP.NET Middleware
	Enabling Our Middleware in ASP.NET Core
	Modify SecuritySummaryController to Access IUserInformation
	Verify User Info Is Being Populated from Claims
	Summary

