
Better Unit Tests through Design Patterns:
Repository, Adapter, Mocks, and more…

Benjamin Day

Benjamin Day
• Brookline, MA
• Consultant, Coach, & Trainer
• Microsoft MVP for Visual Studio ALM
• Scrum, Software Testing & Architecture,

Team Foundation Server
• Scrum.org Trainer

• Professional Scrum Developer (PSD)
• Professional Scrum Foundations (PSF)
• Professional Scrum Master (PSM)

• Scrum.org Evidence-Based Management
Engagement Manager

• Pluralsight.com Author
• www.benday.com, benday@benday.com, @benday

Online courses at Pluralsight.com

Scrum with TFS 2013
coming soon.

On with the show.

Agenda / Overview

• Quick Review

• Design for Testability

• What’s a Design Pattern?

• Design Patterns for Testability

• Patterns for User Interface
Testing
• Server-side web apps

• JavaScript apps

This talk is about unit testing &
test-driven development.

What is Test-Driven Development?

• Develop code with proof that it works
• Code that validates other code
• Small chunks of “is it working?”

• Small chunks = Unit Tests

• “Never write a single line of code unless you have a failing automated
test.”
• Kent Beck, “Test-Driven Development”,

Addison-Wesley

Why Use TDD?

• High-quality code
• Fewer bugs
• Bugs are easier to diagnose

• Encourages you to think about…
• …what you’re building
• …how you know you’re done
• …how you know it works

• Less time in the debugger

• Tests that say when something
works 
• Easier maintenance, refactoring
• Self-documenting

• Helps you to know if it’s working
a lot faster.

• Tends to push you into
better/cleaner architecture.

You shouldn’t need QA to
tell you that your stuff doesn’t work.

Your apps need to be tested.

Your apps need to be testable.

How would you test this?

What is Design For Testability?
• How would you test this?

• Do you have to take the plane up
for a spin?

• Build it so you can test it.

Your apps need to be testable.
You need to design for testability.

A unit test is not the same as
an integration test.

Avoid End-to-End Integration Tests

Does a good test…

• …really have to write all the way to the database?

• …really have to have a running REST service on the other end of that
call?

• …really need to make a call to the mainframe?

It’s called a unit test.

• Small units of functionality

• Tested in isolation

• If you designed for testability, you (probably) can test in isolation.

• If you didn’t, you probably have a monolithic app.

“How am I supposed to test THAT?!”

http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307

http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307

It’ll be a lot easier if you
design for testability.

What makes an app hard to test?

• Tightly coupled

• Hidden or embedded dependencies

• Required data & databases

• Insane amounts of setup code for the test

Hard to test usually also means
hard to maintain.

Design Patterns will help you to create a more
testable & maintainable application.

What’s a Design Pattern?

• Well-known and accepted solution to a common problem

• Avoid re-inventing the wheel

Design patterns in architecture.

Popularized in Software by this book…

Design Patterns for this talk

• Dependency Injection
• Flexibility

• Repository
• Data Access

• Adapter
• Single-Responsibility Principle

• Keeps tedious, bug-prone code
contained

• Strategy
• Encapsulates algorithms &

business logic

• Model-View-Controller
• Isolates User Interface

Implementation from
the User Interface Logic

• Testable User Interfaces

• Model-View-ViewModel

Design goals in a testable system

• (Testable, obviously.)

• Well-organized

• Flexible

Design goals in a testable system

• (Testable, obviously.)

• Well-organized
• Single Responsibility Principle (SRP)
• Layered (example: n-tier)

• Flexible
• Code to interfaces rather than concrete types
• Dependency Injection
• Interface Segregation Principle (ISP)

Single Responsibility Principle:
An object should have only

one reason to change.

http://lostechies.com/derickbailey/files/2011/03/SingleResponsibilityPrinciple2_71060858.jpg

Interface Segregation Principle:
“no client should be forced to depend on

methods it does not use.”

Dependency Injection:
“Don’t get too attached.”

http://lostechies.com/derickbailey/files/2011/03/DependencyInversionPrinciple_0278F9E2.jpg

Advertise Dependencies on Constructor

Less Awesome Now With More Awesome

Why does DI help with testability?

• Helps you focus on the testing task at hand
• Only test what you’re trying to test. Skip everything else.

• Makes interface-driven programming simple

• Interface-driven programming + DI lets you use mocks and stubs in
your tests.

“Mocks & Stubs?”

Mocks vs. Stubs vs.
Dummies vs. Fakes
• Martin Fowler

http://martinfowler.com/articles/mocksArentStubs.html

• Dummy = passed but not used

• Fake = “shortcut” implementation

• Stub = Only pretends to work, returns pre-defined answer

• Mock = Used to test expectations, requires verification at the end of test

http://martinfowler.com/articles/mocksArentStubs.html

Demos:
PersonService saves

valid person objects with
unique user names.

Strategy Pattern
encapsulates an algorithm

behind an interface.

Repository Pattern
encapsulates data access logic.

Demo:
Mocks for code coverage

User Interface Testing

User Interfaces: The Redheaded Stepchild of
the Unit Testing World
• Not easy to automate the UI testing

• Basically, automating button clicks

• UI’s almost have to be tested by a human
• Computers don’t understand the “visual stuff”
• Colors, fonts, etc are hard to unit test for
• “This doesn’t look right” errors

• The rest is:
• Exercising the application
• Checking that fields have the right data
• Checking field visibility

My $0.02.

• Solve the problem by not solving the problem

• Find a way to minimize what you can’t automate

The Solution.

• Keep as much logic as possible out of the UI
• Shouldn’t be more than a handful of assignments

• Nothing smart

• Real work is handled by the “business” tier

• Test the UI separate from everything else

Design Patterns for UI Testability

• Model-View-Controller (MVC)
• ASP.NET MVC

• Model-View-Presenter (MVP)
• Windows Forms
• ASP.NET Web Forms

• Model-View-ViewModel (MVVM)
• AngularJS
• Silverlight
• WPF
• Windows Phone

The idea is that the
user interface becomes

an abstraction.

Demo:
Search for a president using

Model-View-Controller (MVC)

This is also relevant
in the JavaScript world.

MVC / MVVM with AngularJS,
tested by Jasmine

What is AngularJS?

• JavaScript library for data binding

• Logic goes into Controllers
• (ViewModel?)

• HTML becomes a thin layer over the Controllers
• “Views”

• Testing effort is focused on the Controller

AngularJS is easily, readily tested by
Jasmine tests.

Demo:
A simple calculator with

AngularJS and Jasmine Tests

“Ok. Great.
But what about something

useful with data?”

Tip:
Service-oriented applications

are two apps.

Dependency Injection is built
in to AngularJS.

Calls to back-end services get wrapped in
classes called “Services”.

Demo:
President Search with a REST-based

service, AngularJS, & Jasmine

Summary, Part 1: The Patterns

• Dependency Injection
• Flexibility

• Repository
• Data Access

• Adapter
• Single-Responsibility Principle

• Keeps tedious, bug-prone code
contained

• Strategy
• Encapsulates algorithms &

business logic

• Model-View-Controller
• Isolates User Interface

Implementation from
the User Interface Logic

• Testable User Interfaces

• Model-View-ViewModel

Summary, Part 2: The Big Picture

• Quick Review

• Design for Testability

• What’s a Design Pattern?

• Design Patterns for Testability

• Patterns for User Interface
Testing
• Server-side web apps

• JavaScript apps

Any last questions?

Thanks.
benday@benday.com | www.benday.com

