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Scrum with TFS 2013
coming soon.
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On with the show.
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Agenda / Overview

* Quick Review * Design Patterns for Testability
* Design for Testability * Patterns for User Interface
Testing

* Server-side web apps

 What’s a Design Pattern? .
* JavaScript apps
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his talk is about unit testing &
test-driven development.
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What is Test-Driven Development?

* Develop code with proof that it works
* Code that validates other code
e Small chunks of “is it working?”

e Small chunks = Unit Tests

* “Never write a single line of code unless you have a failing automated
test.”

* Kent Beck, “Test-Driven Development”,
Addison-Wesley
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Why Use TDD?

* High-quality code
* Fewer bugs
* Bugs are easier to diagnose

* Encourages you to think about...

* ...what you’re building
* ...how you know you’re done
 ...how you know it works

* Less time in the debugger

* Tests that say when something
works 2>
* Easier maintenance, refactoring
* Self-documenting

* Helps you to know if it’s working
a lot faster.

* Tends to push you into
better/cleaner architecture.



You shouldn’t need QA to
tell you that your stuff doesn’t work.

BDC




Your apps need to be tested.
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Your apps need to be testable.
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How would you test th
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What is Design For Testability?
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t so you can test it.

e Build
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Your apps need to be testable.
You need to design for testability.
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A unit test is not the same as
an integration test.
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Avoid End-to-End Integration Tests

Does a good test...
e ...really have to write all the way to the database?

e ...really have to have a running REST service on the other end of that
call?

e ...really need to make a call to the mainframe?
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It’s called a unit test.

e Small units of functionality
* Tested in isolation
* If you designed for testability, you (probably) can test in isolation.

* If you didn’t, you probably have a monolithic app.
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“How am | supposed to test THAT?

http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307



http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307

it’ll be a lot easier if you
design for testability.
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What makes an app hard to test?
* Tightly coupled

* Hidden or embedded dependencies

* Required data & databases

* Insane amounts of setup code for the test
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Hard to test usually also means
hard to maintain.
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What’s a Design Pattern?

* Well-known and accepted solution to a common problem

* Avoid re-inventing the wheel
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Design patterns in architecture.
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Arch

From Wikipedia, the free encyclopedia

This article is about the arch as an architectural construct. For other uses of Arch, see
Arch (disambiguation). For other uses of Arches, see Arches (disambiguation). For other

uses of Archways, see Archway.

An arch is a structure that spans a space and
supports structure and weight below it. Arches
appeared as early as the 2nd millennium BC in
Mesopotamian brick architecturel! and their
systematic use started with the Ancient Romans who
were the first to apply the technique to a wide range of
structures.
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Popularized in Software by this book...

Design Patterns: Elements of Reusable
Object-Oriented Software Hardcover -

November 10, 1994
by Erich Gamma ~ (Author), Richard Helm ~ (Author), & 2 more
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Design Patterns for this talk

* Dependency Injection * Strategy
* Flexibility * Encapsulates algorithms &

business logic

* Repository

° Data Access ¢ MOdEl-VIeW-COntrO”er

e |solates User Interface
Implementation from

* Adapter the User Interface Logic

* Single-Responsibility Principle e Testable User Interfaces

* Keeps tedious, bug-prone code e Model-View-ViewModel
contained
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Design goals in a testable system

* (Testable, obviously.)

* Well-organized

e Flexible
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Design goals in a testable system

* (Testable, obviously.)

* Well-organized
* Single Responsibility Principle (SRP)
* Layered (example: n-tier)

* Flexible
* Code to interfaces rather than concrete types
* Dependency Injection
* Interface Segregation Principle (ISP)
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Single Responsibility Principle:
An object should have only
one reason to change.
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SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

http://lostechies.com/derickbailey/files/2011/03/SingleResponsibilityPrinciple2_71060858.jpg




Interface Segregation Principle:
“no client should be forced to depend on
methods it does not use.”
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Dependency Injection:
“Don’t get too attached.”
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DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

http://lostechies.com/derickbailey/files/2011/03/DependencylnversionPrinciple_0278F9E2.jpg
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Advertise Dependencies on Constructor

Less Awesome

public class PersonManagerWithoutDI

{

private IPersonRepository m_Repository;

public PersonManagerWithoutDI()
{

// create an instance of IPersonRepository
m_Repository = new SqglPersonRepository();

}

private void Save(IPerson saveThis)

{
Validate(saveThis);

m_Repository.Save(saveThis);

}

private void Validate(IPerson saveThis)

{
// validate it

Now With More Awesome

public class PersonManagerWithDI

{

private IPersonRepository m_Repository;

public PersonManagerWithDI(IPersonRepository instance)
{
if (instance == null)
{
throw new ArgumentNullException("instance",
"instance is null."); ©

}
m_Repository = instance;
}
private void Save(IPerson saveThis)
{
Validate(saveThis);
m_Repository.Save(saveThis);
}
private void Validate(IPerson saveThis)
{
// validate it
}



Why does DI help with testability?

* Helps you focus on the testing task at hand
* Only test what you’re trying to test. Skip everything else.

* Makes interface-driven programming simple

* Interface-driven programming + DI lets you use mocks and stubs in
your tests.
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“Mocks & Stubs?”
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Mocks vs. Stubs vs.
Dummies vs. Fakes

e Martin Fowler
http://martinfowler.com/articles/mocksArentStubs.html

* Dummy = passed but not used

e Fake = “shortcut” implementation

e Stub = Only pretends to work, returns pre-defined answer

* Mock = Used to test expectations, requires verification at the end of test
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http://martinfowler.com/articles/mocksArentStubs.html

Demos:
PersonService saves
valid person objects with
unigque user names.
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Strategy Pattern
encapsulates an algorithm
behind an interface.
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Repository Pattern
encapsulates data access logic.
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4 . ( .
IRepository<T> A lint32Identity A
Generic Interface Interface
= Methods = Properties
@  Delete(T deleteThis) : void & |d { get; set; } : int
GetByld(int id) : T N %

@
@ Getlist() : List<T>
@

Save(T saveThis) : void

o WV
™ A
PersonRepository R ( Person R
Class Class
= Methods = Properties
@ Delete(Person deleteThis) : void # EmailAddress { get; set; } : string
@  GetByld(int id) : Person # FirstName { get; set; } : string
@  GetlList() : List<Person> # |d{get; set; }:int
@  Save(Person saveThis) : void # LastName { get; set; } : string
1\ WV 1\ WV
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Demo:
Mocks for code coverage
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User Interface Testing
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User Interfaces: The Redheaded Stepchild of
the Unit Testing World

* Not easy to automate the Ul testing

Basically, automating button clicks

Ul’s almost have to be tested by a human
e Computers don’t understand the “visual stuff”
* Colors, fonts, etc are hard to unit test for
* “This doesn’t look right” errors

The rest is:
* Exercising the application
* Checking that fields have the right data
* Checking field visibility
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My $0.02.

* Solve the problem by not solving the problem

* Find a way to minimize what you can’t automate
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The Solution.

* Keep as much logic as possible out of the Ul
e Shouldn’t be more than a handful of assignments
* Nothing smart
* Real work is handled by the “business” tier

* Test the Ul separate from everything else
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Design Patterns for Ul Testability

* Model-View-Controller (MVC)
* ASP.NET MVC

 Model-View-Presenter (MVP)

* Windows Forms
e ASP.NET Web Forms

* Model-View-ViewModel (MVVM)

Angularl]S
Silverlight

WPF

Windows Phone
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he idea is that the
user interface becomes
an abstraction.
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Demo:

Search for a president using
Model-View-Controller (MVC)
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his is also relevant
in the JavaScript world.
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MVC / MVVM with Angularls,
tested by Jasmine
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What is Angular]S?

e JavaScript library for data binding

* Logic goes into Controllers
e (ViewModel?)

* HTML becomes a thin layer over the Controllers
e “Views”

 Testing effort is focused on the Controller
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AngularlS is easily, readily tested by
Jasmine tests.
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Demo:
A simple calculator with
AngularlS and Jasmine Tests
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“Ok. Great.
But what about something
useful with data?”
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Ip:
Service-oriented applications
are two apps.
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Dependency Injection is built
in to Angularls.
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Calls to back-end services get wrapped in
classes called “Services”.
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Summary, Part 1: The Patterns

* Dependency Injection * Strategy
* Flexibility * Encapsulates algorithms &

business logic

* Repository

° Data Access ¢ MOdEl-VIeW-COntrO”er

e |solates User Interface
Implementation from

* Adapter the User Interface Logic

* Single-Responsibility Principle e Testable User Interfaces

* Keeps tedious, bug-prone code e Model-View-ViewModel
contained
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Summary, Part 2: The Big Picture

* Quick Review * Design Patterns for Testability
* Design for Testability * Patterns for User Interface
Testing

* Server-side web apps

 What’s a Design Pattern? .
* JavaScript apps
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Any last questions?
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Thanks.
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