Better Unit Tests through Design Patterns:
Repository, Adapter, Mocks, and more...

Benjamin Day

Benjamin Day

Benjamin Day

* Brookline, MA .

BDC L
* Consultant, Coach, & Trainer Benjamin Day
* Microsoft MVP for Visual Studio ALM

* Scrum, Software Testing & Architecture,
Team Foundation Server

* Scrum.org Trainer
* Professional Scrum Developer (PSD)

* Professional Scrum Foundations (PSF) (/
* Professional Scrum Master (PSM) Q Scrum.org

* Scrum.org Evidence-Based Management "
Engagement Manager plura|° ht

Py Pluralsight.com AUthOr hardcore dev and IT tra|n|ng
 www.benday.com, benday@benday.com, @benday

Microsoft*
Most Valuable
Professional

BDC

Online courses at Pluralsight.com

1
Iural t INDIVIDUALS BUSINESS ACADEMIC FREE TRIAL BLOG
..uglu o

hardcore developer training

@ Load Testing with Visual Studio 2012

- This course
gtlzﬁ?é diagnose pel pluralsighto INDIVIDUALS BUSIMNESS FREE TRIAL BLOG

hardcore developer training

performanc

- ALM for Developers with Visual Studio 2012
= b

This course covers Microsoft's Ap|

perspective of a software develoy Iuralc'~| 4 | UL LA il
requirements and SOL Server dat hardcore de"e'°°e' training

2] (oo =S| ALMwith TFS 2012 Fundamentals

g K3 This course provides an overview of Microsoft's Application Lifec$
TFS stack, then then drills in on how to use Team Foundation Server ¢
W use of ALM best practices.

R+ /0 W Tweet 0 EiLke 2 Q&ndﬂSham

BDC

Scrum with TFS 2013
coming soon.

pluralsightes

hardcore dev and IT training

BDC

On with the show.

BDC

Agenda / Overview

* Quick Review * Design Patterns for Testability
* Design for Testability * Patterns for User Interface
Testing

* Server-side web apps

 What’s a Design Pattern? .
* JavaScript apps

BDC

his talk is about unit testing &
test-driven development.

BDC

What is Test-Driven Development?

* Develop code with proof that it works
* Code that validates other code
e Small chunks of “is it working?”

e Small chunks = Unit Tests

* “Never write a single line of code unless you have a failing automated
test.”

* Kent Beck, “Test-Driven Development”,
Addison-Wesley

BDC

BDC

Why Use TDD?

* High-quality code
* Fewer bugs
* Bugs are easier to diagnose

* Encourages you to think about...

* ...what you’re building
* ...how you know you’re done
 ...how you know it works

* Less time in the debugger

* Tests that say when something
works 2>
* Easier maintenance, refactoring
* Self-documenting

* Helps you to know if it’s working
a lot faster.

* Tends to push you into
better/cleaner architecture.

You shouldn’t need QA to
tell you that your stuff doesn’t work.

BDC

Your apps need to be tested.

BDC

Your apps need to be testable.

BDC

IS?

How would you test th

BDC

What is Design For Testability?

o

-

Q

C

©
. o
Rl Q
- <
-+ +
)
& R

©
._mu. +—
o S
- 9
Bt .
> |qnan
O 'S
= 33
W > (O
@) Om
T [P
[) []

t so you can test it.

e Build

BDC

Your apps need to be testable.
You need to design for testability.

BDC

A unit test is not the same as
an integration test.

BDC

Avoid End-to-End Integration Tests

Does a good test...
e ...really have to write all the way to the database?

e ...really have to have a running REST service on the other end of that
call?

e ...really need to make a call to the mainframe?

BDC

It’s called a unit test.

e Small units of functionality
* Tested in isolation
* If you designed for testability, you (probably) can test in isolation.

* If you didn’t, you probably have a monolithic app.

BDC

|II

“How am | supposed to test THAT?

http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307

http://www.pdphoto.org/PictureDetail.php?mat=&pg=8307

it’ll be a lot easier if you
design for testability.

BDC

What makes an app hard to test?
* Tightly coupled

* Hidden or embedded dependencies

* Required data & databases

* Insane amounts of setup code for the test

BDC

Hard to test usually also means
hard to maintain.

BDC

BDC

Design Patterns wil

testable & mai

e

tal

0 you to create a more
nable application.

What’s a Design Pattern?

* Well-known and accepted solution to a common problem

* Avoid re-inventing the wheel

BDC

Design patterns in architecture.

BDC

Create account & Login

Article Talk Read Edit View history |Search Q

BDC

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Arch

From Wikipedia, the free encyclopedia

This article is about the arch as an architectural construct. For other uses of Arch, see
Arch (disambiguation). For other uses of Arches, see Arches (disambiguation). For other

uses of Archways, see Archway.

An arch is a structure that spans a space and
supports structure and weight below it. Arches
appeared as early as the 2nd millennium BC in
Mesopotamian brick architecturel! and their
systematic use started with the Ancient Romans who
were the first to apply the technique to a wide range of
structures.

Contents [hide]

1 Basic concepts
1.1 Fixed arch vs hinged arch
1.2 Types of arches
2 History
3 Construction
3.1 Construction of adobe arches
4 Other types
5 Gallery

C Onn alaa

b—'id
A masonry arch &3
1. Keystone 2. Voussoir 3. Extrados
4. Impost 5. Intrados 6. Rise 7. Clear
span 8. Abutment

Create account & Login

Atticle Talk Read Edit View history ' Q

Flying buttress

WIKIPEDIA

The Free Encyclopedia From Wikipedia, the free encyclopedia

Main page A flying buttress is a specific form of buttressing
Contents most strongly associated with Gothic church

Featured content

architecture. The purpose of any buttress is to resist
Current events

: the lateral forces pushing a wall outwards (which may
Random article
Donate to Wikipedia arise from stone vaulted ceilings or from wind-loading
Wikimedia Shop on roofs) by redirecting them to the ground. The
defining characteristic of a flying buttress is that the

Interaction
Help buttress is not in contact with the wall like a traditional
About Wikipedia buttress; lateral forces are transmitted across an
Community portal intervening space between the wall and the buttress
Recent changes)
Flying buttress systems have two key components - a
Contact page y g _ Y y P
massive vertical masonry block (the buttress) on the
Tools

outside of the building and a segmental or quadrant
arch bridging the gap between that buttress and the
wall (the "fiyer").[1]

What links here
Related changes
Upload file

. VUGS i SR

BDC

Popularized in Software by this book...

Design Patterns: Elements of Reusable
Object-Oriented Software Hardcover -

November 10, 1994
by Erich Gamma ~ (Author), Richard Helm ~ (Author), & 2 more

~ 362 customer reviews

- Look inside ¥
Desien Patterns

Elements of Reusable
Object-Oriented Software

Ervh Camma
Kichaed Helm
IIAII- bhinson
Jeahyer W lissiclins

in Pattern Recognition Algorithms

ISBN-13: 078-5342633610 @ ISBN-10: 0201633612 @ Edition: 1%

Buy New Rent
Price: $42_34 VPrime Price- $20.99 - $27.50
Prime

o7

60 New from $35.39 94 Used from $19.97

F|ip to back Amazon Price New Used

BDC

Design Patterns for this talk

* Dependency Injection * Strategy
* Flexibility * Encapsulates algorithms &

business logic

* Repository

° Data Access ¢ MOdEl-VIeW-COntrO”er

e |solates User Interface
Implementation from

* Adapter the User Interface Logic

* Single-Responsibility Principle e Testable User Interfaces

* Keeps tedious, bug-prone code e Model-View-ViewModel
contained

BDC

Design goals in a testable system

* (Testable, obviously.)

* Well-organized

e Flexible

BDC

Design goals in a testable system

* (Testable, obviously.)

* Well-organized
* Single Responsibility Principle (SRP)
* Layered (example: n-tier)

* Flexible
* Code to interfaces rather than concrete types
* Dependency Injection
* Interface Segregation Principle (ISP)

BDC

Single Responsibility Principle:
An object should have only
one reason to change.

BDC

BDC

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

http://lostechies.com/derickbailey/files/2011/03/SingleResponsibilityPrinciple2_71060858.jpg

Interface Segregation Principle:
“no client should be forced to depend on
methods it does not use.”

BDC

Dependency Injection:
“Don’t get too attached.”

BDC

BDC

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

http://lostechies.com/derickbailey/files/2011/03/DependencylnversionPrinciple_0278F9E2.jpg

BDC

Advertise Dependencies on Constructor

Less Awesome

public class PersonManagerWithoutDI

{

private IPersonRepository m_Repository;

public PersonManagerWithoutDI()
{

// create an instance of IPersonRepository
m_Repository = new SqglPersonRepository();

}

private void Save(IPerson saveThis)

{
Validate(saveThis);

m_Repository.Save(saveThis);

}

private void Validate(IPerson saveThis)

{
// validate it

Now With More Awesome

public class PersonManagerWithDI

{

private IPersonRepository m_Repository;

public PersonManagerWithDI(IPersonRepository instance)
{
if (instance == null)
{
throw new ArgumentNullException("instance",
"instance is null."); ©

}
m_Repository = instance;
}
private void Save(IPerson saveThis)
{
Validate(saveThis);
m_Repository.Save(saveThis);
}
private void Validate(IPerson saveThis)
{
// validate it
}

Why does DI help with testability?

* Helps you focus on the testing task at hand
* Only test what you’re trying to test. Skip everything else.

* Makes interface-driven programming simple

* Interface-driven programming + DI lets you use mocks and stubs in
your tests.

BDC

“Mocks & Stubs?”

BDC

Mocks vs. Stubs vs.
Dummies vs. Fakes

e Martin Fowler
http://martinfowler.com/articles/mocksArentStubs.html

* Dummy = passed but not used

e Fake = “shortcut” implementation

e Stub = Only pretends to work, returns pre-defined answer

* Mock = Used to test expectations, requires verification at the end of test

BDC

http://martinfowler.com/articles/mocksArentStubs.html

Demos:
PersonService saves
valid person objects with
unigque user names.

BDC

Strategy Pattern
encapsulates an algorithm
behind an interface.

BDC

Repository Pattern
encapsulates data access logic.

BDC

4 . (.
IRepository<T> A lint32Identity A
Generic Interface Interface
= Methods = Properties
@ Delete(T deleteThis) : void & |d { get; set; } : int
GetByld(int id) : T N %

@
@ Getlist() : List<T>
@

Save(T saveThis) : void

o WV
™ A
PersonRepository R (Person R
Class Class
= Methods = Properties
@ Delete(Person deleteThis) : void # EmailAddress { get; set; } : string
@ GetByld(int id) : Person # FirstName { get; set; } : string
@ GetlList() : List<Person> # |d{get; set; }:int
@ Save(Person saveThis) : void # LastName { get; set; } : string
1\ WV 1\ WV

BDC

Demo:
Mocks for code coverage

BDC

User Interface Testing

BDC

User Interfaces: The Redheaded Stepchild of
the Unit Testing World

* Not easy to automate the Ul testing

Basically, automating button clicks

Ul’s almost have to be tested by a human
e Computers don’t understand the “visual stuff”
* Colors, fonts, etc are hard to unit test for
* “This doesn’t look right” errors

The rest is:
* Exercising the application
* Checking that fields have the right data
* Checking field visibility

BDC

My $0.02.

* Solve the problem by not solving the problem

* Find a way to minimize what you can’t automate

BDC

The Solution.

* Keep as much logic as possible out of the Ul
e Shouldn’t be more than a handful of assignments
* Nothing smart
* Real work is handled by the “business” tier

* Test the Ul separate from everything else

BDC

Design Patterns for Ul Testability

* Model-View-Controller (MVC)
* ASP.NET MVC

 Model-View-Presenter (MVP)

* Windows Forms
e ASP.NET Web Forms

* Model-View-ViewModel (MVVM)

Angularl]S
Silverlight

WPF

Windows Phone

BDC

he idea is that the
user interface becomes
an abstraction.

BDC

Demo:

Search for a president using
Model-View-Controller (MVC)

BDC

his is also relevant
in the JavaScript world.

BDC

MVC / MVVM with Angularls,
tested by Jasmine

BDC

What is Angular]S?

e JavaScript library for data binding

* Logic goes into Controllers
e (ViewModel?)

* HTML becomes a thin layer over the Controllers
e “Views”

 Testing effort is focused on the Controller

BDC

AngularlS is easily, readily tested by
Jasmine tests.

BDC

Demo:
A simple calculator with
AngularlS and Jasmine Tests

BDC

“Ok. Great.
But what about something
useful with data?”

BDC

Ip:
Service-oriented applications
are two apps.

BDC

Dependency Injection is built
in to Angularls.

BDC

Calls to back-end services get wrapped in
classes called “Services”.

BDC

BDC

SE

Demo:
Presigent Searc

vice, Ang

N with a REST-based

ularlS, & Jasmine

Summary, Part 1: The Patterns

* Dependency Injection * Strategy
* Flexibility * Encapsulates algorithms &

business logic

* Repository

° Data Access ¢ MOdEl-VIeW-COntrO”er

e |solates User Interface
Implementation from

* Adapter the User Interface Logic

* Single-Responsibility Principle e Testable User Interfaces

* Keeps tedious, bug-prone code e Model-View-ViewModel
contained

BDC

Summary, Part 2: The Big Picture

* Quick Review * Design Patterns for Testability
* Design for Testability * Patterns for User Interface
Testing

* Server-side web apps

 What’s a Design Pattern? .
* JavaScript apps

BDC

Any last questions?

BDC

Thanks.

benday@benday.com | www.benday.com

Benjamin Day

