
Sponsored by Microsoft

January 29-31 2013  Microsoft Redmond

Agile Under a Waterfall
Benjamin Day

benday.com

About Me
• Cambridge, MA

• Consultant, Coach, & Trainer

• Microsoft MVP for Visual Studio ALM

• Team Foundation Server,

Software Testing, Scrum,

Software Architecture

• Scrum.org Classes

– Professional Scrum Developer (PSD)

– Professional Scrum Foundations (PSF)

• www.benday.com, benday@benday.com, @benday

http://www.benday.com/
mailto:benday@benday.com

Introductory Thoughts.

What do I mean by “waterfall”?

• Waterfall = plan-driven

• Gaant charts

• Microsoft Project

• Start Dates & End Dates

• Phases

What is Scrum Under a Waterfall?

• “Agile Under a Waterfall”

• Scrum + plan-driven

• Agile + plan-driven

• SUW

Assumptions

• SUW exists

• Value of Agile / Scrum is…

– Settled

– A good thing

Agile is popular.

“Water-Scrum-Fall Is The Reality Of

Agile For Most Organizations

Today”
by Dave West

Forrester Research

July 26, 2011

Scrum is arguably the dominant

Agile flavor.

“Water-Scrum-Fall Is The Reality Of

Agile For Most Organizations Today”
by Dave West

Forrester Research

July 26, 2011

Agile seems to get results.

The CHAOS Manifesto, Copyright 2011

My $0.02 on SUW

• It’s a difficult

place to be.

• It’s a transitional

form.

…and now a quote by a leading

project management expert.

“You can drive

with your feet. It

doesn’t mean it’s

a good idea.” *

So what do you do if your

company does SUW?

Two options.

1. Quit in protest. Get a new job.

2. Try to make it work.

– Someone else is paying.

– Make informed decisions.

– Lead the transition.

Goal for this talk

• Be practical

• Try to see both sides

• Acknowledge that change takes time

Comparisons & Motivations.

Waterfall vs. Scrum
Waterfall Scrum / Agile

Requirements docs Just-in-time, informal requirements

Occasional “customer” involvement Frequent “customer” involvement

Start-to-finish Project Plan Product Backlog. Plan for Sprint.

Details are sketchy beyond that.

Priorities shift based on new data.

Tasks are assigned Assigned tasks are a bottleneck

Potentially large team size Teams of 3 – 9 people

Multiple phases, eventual delivery Working software each Sprint / Iteration

Resistant to change Change is expected

Contract says what we build, deliver Contract is a lot closer to T&E

Why Waterfall?

• Comes naturally

• Feels good

– We’ve got a plan.

– We’ve got dates.

– What could possibly go wrong?

• Helps managers manage

• Pin down what’s going to be built

• Minimize uncertainty

Why Scrum / Agile?

• Embraces uncertainty

• Empirical

• “Forecast” rather than “commitment”

• Self-organization and estimation

by the “do-ers”

Who is Waterfall for?

Ever seen a company that is

Agile at the top and

Waterfall at the bottom?

Do managers trust their team?

What does the team think about

the managers?

Why Waterfall people think

Agile-ists are nuts

• Sandal-wearing anarchists

• Their estimates are always

wrong

• They’re always late

• They’re lazy

• The plan is flawless.

• Devs write crummy, buggy

code

“Too complex to not plan.”

Why Agile-ists think Waterfall

people are nuts

• The plan is largely imposed

– “Voluntold”

• What we told them was bogus.

– Haven’t the foggiest clue

– Just enough to make them go away

• Didn’t have anything real to estimate anyway

“Too complex to plan.”

Point of agreement #1:

Each thinks the

other side is wrong.

Point of agreement #2:

The work is complex.

Making it work.

SUW is the

grumpy marriage of

two processes.

Why SUW?

• Required by contract

• Required by law

• The Agile Experiment

• Just cuz.

Leverage the strengths of each

• Scrum for day-to-day dev/test activities

• Detect problems with Sprints

• Focus on DoD & working software

• Waterfall for multi-team coordination

• Waterfall for release planning

Differences for Scrum / Agile

• Focus on ‘Definition of Done’

• Daily Scrum

• Sprint Burndown

• Sprint Review

• Retrospective

• Backlog = Project Plan

• Less emphasis on Backlog

Grooming & Sprint planning

• Less negotiation during Sprint

Same Changed

Some of the risks of SUW.

Impedance mismatch leads to

poor communication.

Lack of trust & transparency.

Culture of fear.

A complete detachment

from reality.

Everything is going great

until it isn’t.

It’s two sets of books.

Using metrics for evil.

For example,

Using the Burndown for Evil

A lot of orgs are obsessed with

individual performance.

“Show it to me when it’s done.”

So, uhhh…how do you

make it work?

Five tips.

1. Think positive.

2. Come to terms with uncertainty.

3. Fear is everywhere.

4. Avoid ‘earned value’.

5. Avoid keeping two sets of books.

#1.

Think positive.

People get weird when their org

starts thinking about getting

more Agile.

One problem is requiring

people to think.

Another major problem

is the human

fear of loss.

Focus on

what you gain

rather than

what you lose.

Focus on ‘Done Software’.

We’re going to get

done software more often.

You do have to get past

change being a bug.

It’s a chance to adapt.

You get ‘done’ software and if you

don’t like it, you can change it.

It’s not “rework.”

It’s improving existing features to

better meet the needs of the

stakeholders.

Use the sprint boundaries as a way

to take stock of where you are.

“Strategy is the use of the

engagement for the

purpose of the war.”

from “On War”

by Carl Phillip Gottfried von Clausewitz

#2.

Come to terms with uncertainty.

Software is not a ‘sure thing.’

Wishing does not make it so.

Gripping tighter also does not

make it so.

Software always gets more

complex once you start.

Change is going to happen.

Making your teams spend extra

time on ‘more accurate accurate

planning’ is

(probably) wasteful.

Get to good enough

and then stop.

#3.

Fear is everywhere.

Your developers are

afraid of you.

Your middle managers are afraid of

you and your developers.

Remember that your developers

were picked on and bullied.

If you make them nervous…

…they know what you

want to hear…

…and they’ll tell it to you.

(Unfortunately, it’s not true.)

You need to try to create trust.

You need to make it

ok to be “wrong”.

You need to make it ok for your

teams to tell you that

you are wrong.

“The goal of a leader should be to maximize

resistance—in the sense of encouraging

disagreement and dissent.

…

If you aren’t even aware that the people

in the organization disagree with you,

then you are in trouble.”

Leadership The Hard Way

by Dov Frohman & Robert Howard

"Too often in organizations leaders think

that if they get the three R’s clear—rules,

roles, and responsibilities—innovation will

logically follow. More often than not, results

go 180 degrees in the opposite direction."

“Yes To The Mess:

Surprising Leadership Lessons from Jazz”
by Frank J. Barrett

Harvard Business Review Press

They’re terrified of being wrong.

They don’t understand

your motivations.

When you say that you

“need all this by X date”…

…they believe you.

“…research shows that the biggest obstacle

to creating the psychological safety that

allows people to learn from mistakes is a

hierarchy. When those with status are

distant or intimidating, those beneath them

are more likely to save face by hiding or

ignoring errors.”

“Yes To The Mess:

Surprising Leadership Lessons from Jazz”
by Frank J. Barrett

Harvard Business Review Press

You have a priority in your head.

Share that vision.

#4.

Avoid ‘earned value’.

“I’m 72.6% done with my task.”

…and now a quote by a leading

project management expert.

“[Earned value] is the path to

the dark side. [Earned value]

leads to [technical debt].

[Technical debt] leads to

[maintainability problems].

[Maintainability problems] lead

to suffering.”

Yoda, Star Wars: Episode 1

Focus on your Definition of Done.

It’s done or it isn’t.

Done software only.

(Oh…and force your team

to write unit tests.)

#5.

Avoid keeping two sets of books.

A shared reality is essential.

Try to avoid the overhead of

communicating between

the two visions.

Tip: Try

Team Foundation Server +

Microsoft Project Server

Team Foundation Server & Visual Studio

• One stop shop for your

devs

• Great tools for running an

Agile / Scrum project.

• Integrated with source

control

• Automated build system

• QA testing tools for

managing / tracking test

suites and test progress

• Feedback capture

• Lightweight requirements

Microsoft Project Server

• Plug-in to SharePoint

• Accessed via:

– Web interface

– Microsoft Project

• Enterprise project management

– Tasks

– Portfolios of projects

– Timesheets

– Resources

– Approval workflows

TFS & MPS Integration

• Bi-directional sync

• TFS data to/from Enterprise Project Plans

TFS + Project Server Scenarios

• Track progress across many teams for a large effort

– Think enterprise “roll-up”

• Requirements in Project Server 

Details created in TFS by the teams

– Project Server can approximate your “Product Backlog”

• Modifications have an optional approval workflow

– Keeps Waterfall-centric managers in the loop

Big win:

Both groups stay in their

preferred tools.

Big win:

Synchronization happens

automatically.

“Just the facts, ma’am.”
• TFS captures data without judgment

• Is it in source control?

• Does the build work?

• Do the tests pass?

• What’s the bug count?

• What’s the history on that work item?

• Published to Project Server without

judgment

Transparency & honesty

is crucial for trust in SUW.

Five tips.

1. Think positive.

2. Come to terms with uncertainty.

3. Fear is everywhere.

4. Avoid ‘earned value’.

5. Avoid keeping two sets of books.

…in closing.

Quick overview on Clausewitz.

http://www.bbc.co.uk/programmes/b01hl293

“In Our Time”

BBC Radio 4

May 17, 2012

http://www.bbc.co.uk/programmes/b01hl293

The emotional overhead of discussing

scope and other issues.

“Negotiating with Emotion”
by Kimberlyn Leary, et al.

Harvard Business Review

January 2013

Some thoughts on letting go.

“Yes To The Mess:

Surprising Leadership

Lessons from Jazz”
by Frank J. Barrett

Harvard Business Review Press

On leadership style, communication,

and failures.
“The Generals: American

Military Command from

World War II to Today”
by Thomas E. Ricks

Summary

• SUW can be awkward

• There can be trust problems

• Use Scrum/Agile to detect problems

• TFS & Project Server helps

Project Management Impedance Mismatch

• Transparency is the key

Any last questions?

Thank you.

http://www.benday.com | benday@benday.com

http://www.benday.com/
mailto:benday@benday.com

